SHAHAR, T., SHEKHAR, S., ATZMON, D., SAFFIDINE, A., JUBA, B., & STERN, R. (2021).

SAFE MAPF WITH TIME UNCERTAINTY

JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 70. DOI: 10.1613/JAIR.1.12397

JAKUB MESTEK

SEMINAR ON ARTIFICIAL INTELLIGENCE, MAY 2022

OUTLINE

- Introduction
- MAPF-TU
- Algorithms
 - A* + OD_{TU}
 - CBS_{TU}
- Experiments
- Online Replanning
- Conclusion

INTRODUCTION, RELATED WORK

- Delays
- Existing approaches
 - k-robustness
 - *p*-robustness
- New approach
 - Bounds on edge travel time
 - Looking for safe solution

MAPF-TU

- Classical MAPF
 - Graph G = (V, E)
 - Start and target for each agent
 - Discrete time
- $w^{-}(e), w^{+}(e)$ lower and upper bound on time to traverse edge e
- Solution:
 - vector of single-agent plans
 - $\pi_a = ((v_0, v_1), (v_1, v_2), \dots, (v_{n-1}, v_n))$ where $v_0 = s(a), v_n = t(a)$
 - Safe solution

POTENTIAL PRESENCE

- Uncertainty in agent's actual position
- Potential presence $\tau(\pi, v)$
 - set of time intervals when agent may be at v when following single-agent plan π

$$\pi = ((s, v_1), (v_1, v_2), (v_2, g))$$

Potential presence for an edge similarly

POTENTIAL CONFLICT

- Potential conflict = non-empty intersection of potential presence
- Safe solution = no potential conflicts

$$\bigcup_{1 \le i < j \le k} \left[\bigcup_{v \in \mathcal{V}} \tau(\pi_i, v) \cap \tau(\pi_j, v) \right]$$
$$\cup \bigcup_{u, v \in \mathcal{V}} \tau(\pi_i, u, v) \cap \tau(\pi_j, u, v)$$
$$\cup \bigcup_{u, v \in \mathcal{V}} \tau(\pi_i, u, v) \cap \tau(\pi_j, v, u) \right] = \emptyset$$

SOLUTION COST

- Uncertainty over edge durations
- SOCopt sum of lower bound durations of all actions
- SOCpes sum of upper bound durations of all actions

A* + OD

• A* for MAPF

- State: vector of individual positions
- Action: vector of individual actions
- Legal actions only
- Operator Decomposition
 - Expanding only one agent
 - Fixed order of agents

$A^* + OD_{TU}$

- Non-unit edge lengths
 - State: $(\langle a_1, v_1, T_1 \rangle, \dots, \langle a_k, v_k, T_k \rangle)$
 - Expanding with agent having minimal optimistic bound instead of round-robin
 - Needs to check predecessor states for conflict
- Heuristic
 - SIC sum of "shortest" paths

$\mathsf{CBS}_{\mathsf{TU}}$

Lower level

• A* over states (v, T) where T is potential presence

Higher level

- Potential conflicts
- Improvement: Prioritized Conflicts (PC)
 - Cardinal
 - Semi-cardinal
 - Non-cardinal

Algorithm 1: The CBS _{TU} Algorithm.	
Input: A MAPF-TU instance with k agents; An optimization criteria, f	
Output: A set of collision-free single-agent plans	
$1 \ root.constraints = \emptyset$	
2 root.solution \leftarrow individual single-agent plans returned by low-level() approach	
3 $root.cost \leftarrow SOC(root.solution)$	
4 Add root to OPEN	
5 while OPEN not empty do	
6 $N \leftarrow$ the best node from OPEN // based on some objective function	
7 Validate <i>single-agent plans</i> in N until the first conflict occurs	
8 if no conflict found then	
9 return N.solution	
$o conflict \leftarrow FindConflict(N.solution)$	
for agent a_i belongs to the conflict do	
2 $N_i \leftarrow Create$ a new CT node	
if vertex-conflict(conflict) then	
$ 4 = N_i.constraints \leftarrow N.constraints \cup (a_i, v, t)$	
15 else	
$16 \qquad N_i.constraints \leftarrow N.constraints \cup (a_i, e, t)$	
$\dot{N}_i.solution \leftarrow N.solution$	
Update N_i . solution with a single-agent plan returned by $low-level(N_i)$ for a_i	
$N_i.cost = SOC(N_i.solution)$	
Add node N_i to OPEN	
return No solution found	

EXPERIMENTAL SETUP

- Edge traversal time
 - Uncertainty parameter U
 - $w^{-}(e)$ from [1, U + 1]
 - $w^+(e)$ from $[w^-(e), U+1]$
 - Uniformly at random
- Timeout: 5 min
- Optimizing SOCpes

(a) Open

(b) DAO

(c) Warehouse

Success rates for Open grid 8 x 8

k	l	U = 0	l	U = 1	l	U = 2	l	U = 4
	$CBS_{\rm TU}$	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$
3	100%	100%	100%	100%	100%	100%	100%	100%
7	100%	100%	100%	88%	94%	72%	58%	46%
10	100%	87%	80%	43%	54%	13%	12%	0%
15	100%	13%	18%	3%	0%	0%	0%	0%

k = # agents

• Edge traversal time bounds ... randomly from [1, U + 1]

Success rates for DAO map

$\frac{k}{k}$	l	U = 0	l	U = 1	l	$\mathcal{I}=2$	l	U = 4
	$CBS_{\rm TU}$	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$	CBS_{TU}	$\mathrm{A}^* + \mathrm{OD}_{\mathrm{TU}}$
4	100%	100%	52%	17%	44%	23%	22%	13%
7	92%	93%	14%	0%	2%	0%	0%	0%
10	80%	70%	4%	0%	3%	0%	0%	0%
13	70%	27%	0%	0%	0%	0%	0%	0%

• k = # agents

• Edge traversal time bounds ... randomly from [1, U + 1]

Open grid 8x8, CBS_{TU}

Success rates for Warehouse map

k	U =	= 0	U	= 1	U =	= 2	U =	= 4
	CU	PU	CU	PU	CU	PU	CU	PU
4	100%	100%	96%	100%	92%	98%	86%	96%
7	98%	98%	84%	96%	68%	92%	48%	80%
10	94%	94%	48%	76%	34%	68%	10%	56%
13	82%	82%	18%	42%	6%	28%	0%	18%

(c) Warehouse

- k = # agents
- Edge traversal time bounds ... randomly from [1, U + 1]
- Complete (CU) and Partial (PU) Uncertainty

Open grid 8x8, 9 agents, CBS_{TU}

U	Sum	of Cost	(SOC)	<i>—</i>	a
	Opt.	Pes.	Range	Time	Success
0	47.7	47.7	0.0	0.04	100%
1	59.5	70.3	10.8	2.59	100%
2	73.6	96.9	23.3	5.59	98%
3	86.4	122.2	35.8	20.2	84%
4	104.0	146.7	42.7	19.4	70%
5	107.3	166.0	58.7	34.3	67%
6	122.5	179.4	56.0	30.1	69%
7	137.3	205.2	67.9	23.9	69%
8	145.9	232.8	86.9	32.6	53%
9	171.5	286.5	115.0	42.0	50%

ONLINE REPLANNING

• Agent can sense current time when arrives at a vertex

• SOCpes: 4 + 3n vs. 4 + 2n

SENSE SETTING

- No communication
- Agent improves its plan individually
- $\tau(\pi'_i,*) \subset \tau(\pi_i,*)$ to ensure safety

SENSE+COM

- Agents share sensed information
- Centralized replanning
 - Run CBS_{TU} for replanning agents
 - Initialized with constraints covering potential presence of not-replanning agents

REPLANNING – EXPERIMENTS

• Open grid map, 8 agents

SOCopt

2	\frown	h	AC
5		Ρ	CS

U	Initial SOC	Final SOC		
	Intitut SOC	SENSE	S+C	
0	43.06	43.06	43.06	
1	59.32	58.22	58.05	
2	72.89	72.61	72.96	
3	93.45	90.79	91.10	
4	111.09	109.10	107.64	
5	115.60	118.67	111.07	
6	129.53	137.96	127.33	
$\overline{7}$	155.57	150.10	148.57	
8	166.89	163.47	159.22	

U	Initial SOC	Final	SOC
		SENSE	S+C
0	43.06	43.06	43.06
1	58.58	58.16	58.63
2	74.44	75.70	73.56
3	93.76	92.74	91.88
4	116.04	116.41	114.13
5	124.07	125.02	120.04
6	137.63	138.90	134.60
7	163.10	158.98	160.68
8	176.07	173.42	173.81

REPLANNING – EXPERIMENTS

• Warehouse map, 8 agents

SOCopt

SC	C	þes

IT	Initial SOC	Final SOC		
U	Intitut SOC	SENSE	S+C	
0	240.00	240.00	240.00	
1	265.31	265.11	255.83	
2	283.29	282.79	257.88	
3	305.43	305.10	260.95	
4	316.17	315.39	254.78	
5	338.43	337.57	264.29	
6	346.46	345.85	264.46	
$\overline{7}$	368.38	367.62	267.15	
8	423.10	421.91	280.60	

U	Initial SOC	Final SOC		
	Intitut DOC	SENSE	S+C	
0	240.00	240.00	240.00	
1	248.70	251.07	248.50	
2	262.55	266.12	262.05	
3	264.44	272.18	264.56	
4	268.30	268.30	268.47	
5	270.45	270.45	270.66	
6	272.97	272.97	273.84	
7	276.68	276.68	276.54	
8	285.80	285.80	284.39	

CONCLUSION

- MAPF with uncertainty in time to traverse an edge
- CBS_{TU} is better
- Online replanning
 - Theoretically always advantageous
 - Experimentally: significant benefit only in SENSE+COM optimizing for optimistic SOC